If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4x+3)/(x^2+3x+2)=13/12
We move all terms to the left:
(4x+3)/(x^2+3x+2)-(13/12)=0
Domain of the equation: (x^2+3x+2)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
x^2+3x!=-2
x∈R
(4x+3)/(x^2+3x+2)-(+13/12)=0
We get rid of parentheses
(4x+3)/(x^2+3x+2)-13/12=0
We calculate fractions
(-13x^2-39x-26)/(12x^2+36x+24)+(48x+36)/(12x^2+36x+24)=0
We multiply all the terms by the denominator
(-13x^2-39x-26)+(48x+36)=0
We get rid of parentheses
-13x^2-39x+48x-26+36=0
We add all the numbers together, and all the variables
-13x^2+9x+10=0
a = -13; b = 9; c = +10;
Δ = b2-4ac
Δ = 92-4·(-13)·10
Δ = 601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{601}}{2*-13}=\frac{-9-\sqrt{601}}{-26} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{601}}{2*-13}=\frac{-9+\sqrt{601}}{-26} $
| h−6=13 | | -2-3y+12=7y-1+y | | 3(d-4)+(4-d)2=16 | | 3/2=5.d-1/2 | | 2x+{3x-(4x-5)=1/4x-2 | | 2a-5a=12 | | -8x-14-x=21-4x | | 8r=18-r | | m-5+2=-11 | | 6n-5n=9+4n-6n | | -⅙(2x+12)=-1/3x+12 | | 3/5(5-k)-6=0 | | m-5+2=11 | | A-7=(7-a) | | 9x-22=4x-1+9 | | 3(i+3)+5(I+3)+4=-4 | | 384=6+6(7-8x) | | 15+5x/10=2x+12 | | 4x+6=4x+18 | | (18+x+x-8+3x+22)=128 | | 5y+13=36 | | -6=3x-4 | | 3n-36+4n=-78 | | 6+5•x=21 | | 3a×=(-5a) | | 8w-2=4w+14 | | M+5=c | | 12x=13-x^2 | | 2w+2(5w)+w=494 | | 12=-5=m | | 5x+x−15=6+2x−x | | -2q=-18 |